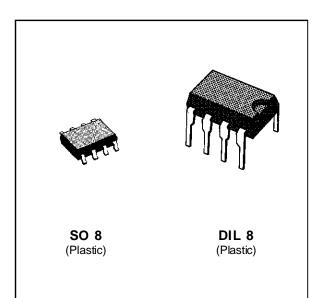


TRIBALANCED PROTECTION FOR ISDN INTERFACES

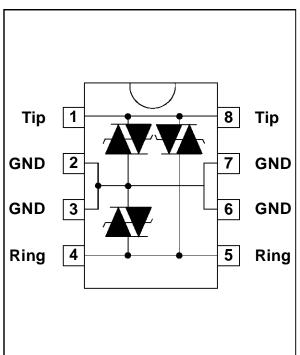
FEATURES

- BIDIRECTIONAL TRIPOLE PROTECTION.
- CROWBAR PROTECTION.
- PEAK PULSE CURRENT: I_{PP} = 30 A, 10/1000 μs.
- BREAKDOWN VOLTAGE: TPI80 = 80V
 - TPI120 = 120V.
- AVAILABLE IN DIL8 AND SO8 PACKAGES.

DESCRIPTION: TRIBALANCED PROTECTION

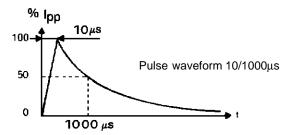

Dedicated devices for ISDN interface and high speed data telecom lines protection.

It's a tripole TRISIL with low capacitance providing:


- Low capacitances from lines to ground : allowing high speed transmission without signal attenuation.
- Good capacitance balance (Line A/Line B) in order to insure the longitudinal balance of the line.
- Fixed breakdown voltage in both common and differential modes.
- The same surge current capability in both common and differential modes.

IN ACCORDANCE WITH FOLLOWING STANDARDS :

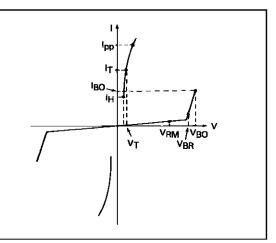
CCITT K17 - K20	{ 10/700 μs 5/310 μs	1.5 kV 38 A
VDE 0433	{ 10/700 μs 5/200 μs	2 kV 50 A
CNET	{ 0.5/700 μs 0.2/310 μs	1.5 kV 38 A



SCHEMATIC DIAGRAM

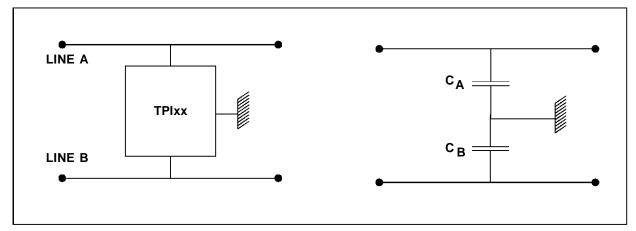
1/8

Symbol	Parameter	Value	Unit	
lpp	Peak pulse current	10/1000 μs 5/320 μs 2/10 μs	30 40 90	A
ITSM	Non repetitive surge peak on-state current	tp = 10 ms tp = 1 s	5 3.5	A
di/dt	Critical rate of rise of on-state current	Non repetitive	100	A/μs
dv/dt	Critical rate of rise of off-state voltage 67% VBR		5	KV/µs
T _{stg} Tj	Storage and operating junction temperature rar	- 40 to + 150 + 150	°C °C	


THERMAL RESISTANCES

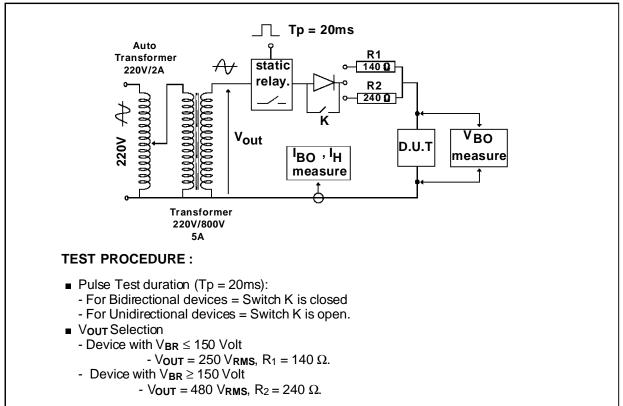
Symbol	Parameter	Value	Unit	
R _{th} (j-a)	Junction-to-ambient	DIL 8 SO 8	125 171	°C/W °C/W

ELECTRICAL CHARACTERISTICS

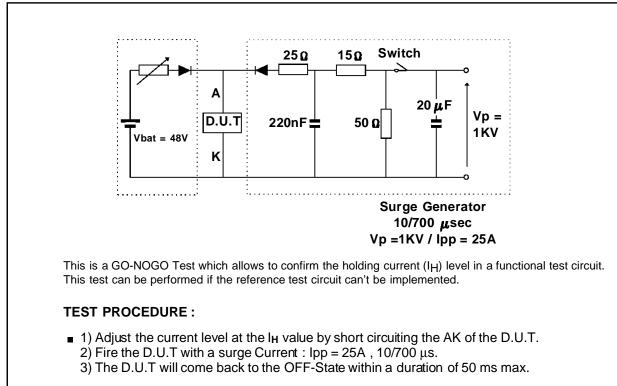

Symbol	Parameter	
V _{RM}	Stand-off voltage	
VBR	Breakdown voltage	
VBO	Breakover voltage	
ŀΗ	Holding current	
VT	On-state voltage	
IBO	Breakover current	
IPP	Peak pulse current	

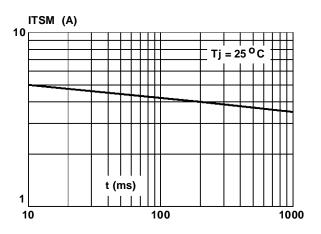
Types	I _R @	v _{RM}	VBR	@ I <mark>R</mark>	VBO	IBO	ІН	νт
	max		min		max	max	min	max
					note1	note1	note1	note2
	μΑ	v	v	mA	v	mA	mA	v
TPI80xxP	10	70	80	1	120	800	150	8
TPI120xxP	10	105	120	1	180	800	150	8

Note 1 : See the reference test circuit for I_H, I_{BO} and V_{BO} parameters. Note 2 : Square pulse Tp = $500 \,\mu s \cdot h = 5A$.


CAPACITANCES CHARACTERISTICS

CONFIGURATION	C _A (pf) max	C _B (pf) max	CA - CB (pf) max
VA =1V VB =56V	70	50	30
VA = 56V VB= 1V	50	70	30


All parameters tested at 25°C, except where indicated


REFERENCE TEST CIRCUIT FOR $I_{H},\,I_{BO}$ and V_{BO} parameters :

FUNCTIONAL HOLDING CURRENT (IH) TEST CIRCUIT = GO - NOGO TEST.

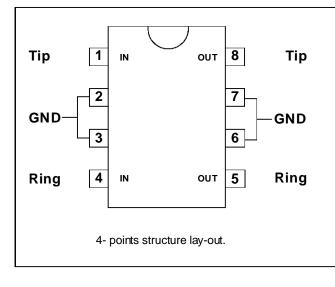
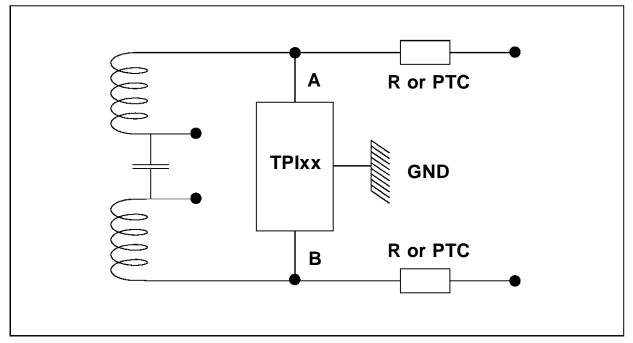
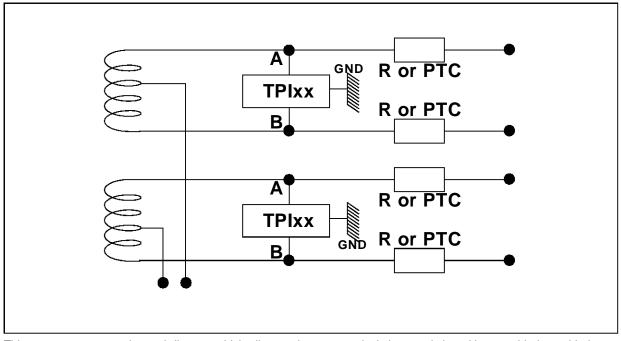


Figure 1 : Non repetitive surge peak on-state current. (with sinusoidal pulse : F =50Hz)

APPLICATION NOTE.


1) Connect pins 2, 3, 6 and 7 to ground in order to guarantee a good surge current capability for long duration disturbances.

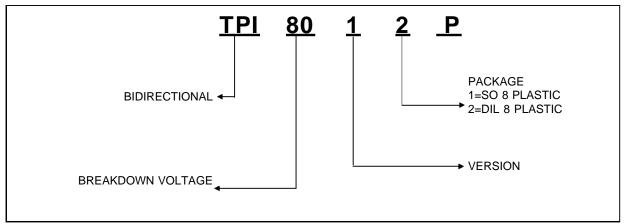
2) In order to take advantage of the "4-points structure" of the TPIxxxP, the tip and Ring lines have to cross through the device. in this case, the device will eliminate the overvoltages generated by the parasitic inductances of the wiring (Ldi/dt), especially for very fast Transients.



APPLICATION NOTE

U Interface Protection

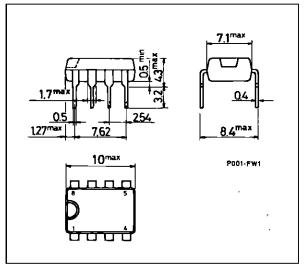
S Interface Protection



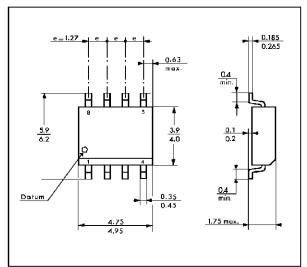
This component use an internal diagram which allows to have symetrical characteristics with a good balanced behaviour.

This topology insures the same breakdown voltage level in positive and negative for differential or common mode surge.

ORDER CODE

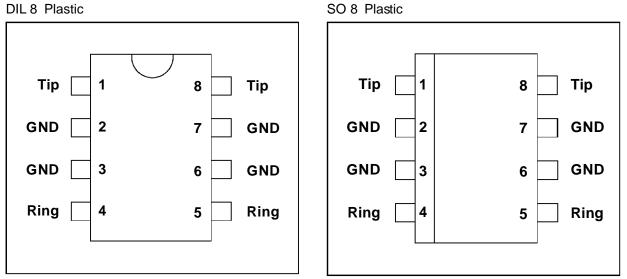

MARKING

Package	Туре	Marking	Package	Туре	Marking
SO8	TPI8011	TPI80	DIL8	TPI8012	TPI80
	TPI12011	TPI120		TPI12012	TPI120


Packaging : Products supplied in antistatic tubes.

PACKAGE MECHANICAL DATA (in millimeters)

DIL 8 Plastic


SO 8 Plastic

۶Ţ,

CONNECTION DIAGRAM

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I²C Components by SGS-THOMSON Microelectronics, conveys a licence under the Philips I²C Patent. Rights to use these components in an I²C system, is grantede provided that the system conforms to the I²C Standard Specification as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

